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The lecture is devoted to gradient damage models which allow us to describe all the process of 
degradation of a body including the nucleation of cracks and their propagation. The construction 
of such model follows the variational approach to fracture [2] and proceeds into two stages: (1) 
definition of the energy; (2) formulation of the damage evolution problem. The total energy of 
the body is defined in terms of the state variables which are the displacement field and the 
damage field in the case of quasi-brittle materials [5], whereas they contain also the plastic strain 
field in the case of ductile materials [1]. That energy contains in particular gradient damage terms 
in order to avoid too strong damage localizations. The formulation of the damage evolution 
problem is then based on the concepts of irreversibility, stability and energy balance, as well in 
quasi-static as in dynamic [4]. That allows us to construct homogeneous as well as localized 
damage solutions in a closed form and to illustrate the concepts of loss of stability, of scale 
effects, of damage localization, and of structural failure. Moreover, the variational formulation 
leads to a natural numerical method based on an alternate minimization algorithm. Several 
numerical examples will illustrate the ability of this approach to account for all the process of 
fracture including a 3D thermal shock problem where the crack evolution is very complex [3]. 

 

Numerical simulation of a ceramic slab submitted to a thermal shock by a gradient damage model 
(a) Computed damage field d (blue, d=0; red, d=1). (b)  Experimental results from [20]: Y. Shao, 

Y. Zhang, X. Xu, Z. Zhou, W. Li, and B. Liu, J. Am. Ceram. Soc., 94: 2804 , 2011. 
 

 
Simulation of the (quasi-static) failure of a 2D-slanted specimen under uniaxial traction by a 

gradient damage model coupled with plasticity  
(left: experiment; center: damage field; right: cumulated plastic strain field) 

effects are not considered because the diffusion velocity of
the temperature field is much slower than the wave speed in
the material at the relevant scales in time and space. This
hypothesis is universally accepted in the literature on
thermal shock problems [3,4,12– 14]. We model material
failure using a gradient damage model characterized by the
energy function
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where ! is a scalar damage field varying between 0 (sound
material) and 1 (fully damaged material), Gc is the mate-

rial’s fracture toughness, ‘ is an internal length, and cw ¼R
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ds is a normalization constant. In a time-discrete

setting, the quasistatic evolution is obtained by solving
at time ti the following minimization problem:
minu;!% !i& 1

Etiðu;!Þ, where the unilateral constraint on !
enforces the irreversibility condition on the damage. The
compliance function s and the energy dissipation function
w should be chosen such that (1) converges as ‘ ! 0 to a
Griffith-like energy

R
!n" c tð"Þdx þ GcSð"Þ, where S is

the surface measure of the crack " [2,15,16]. In this model,
material interpenetration in the fully damaged area is
possible. In all the simulations presented here, it can be
checked a posteriori that this issue does not present itself.
Here, we use sð!Þ ¼ 1=ð1 & !Þ2 and wð!Þ ¼ !, a choice
motivated by the convenience of its numerical implemen-
tation and specific analytical studies [9,17]. With this
choice the damage model has a stress-softening behavior
and remains purely elastic without damage until the stress
reaches the critical value,
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The relation above may be used to determine the numerical
value of the internal length for a specific material from the
knowledge of its elastic limit "c, Young modulus E, and
fracture toughness Gc [17]. The present model is in many
aspects similar to the phase-field models of fracture
developed independently [18]. Those with single-well
dissipation potentials [1,19] are in the form of (1) with
wð!Þ ¼ c½1 & gð1 & !Þ(, where gð#Þ ¼ 4#3 & #4. One
significant difference is that, while phase-field models
typically involve some form of viscous regularizations,
our formulation is rate independent. In addition, the current
literature based on phase-field models is concerned only
with the propagation of preexisting cracks and does not
consider the initiation problem.

The dimensional analysis of the energy (1) highlights
three characteristic lengths: the geometric dimension of the
domain L, the internal length ‘, and the Griffith length
‘0 ¼ Gc=ðE$2#T2Þ. Using the material’s internal length
as the reference unit, the problem can be reformulated in

terms of two dimensionless parameters, the dimension of
the structure L=‘ (a geometric parameter) and the intensity
of the thermal shock ‘0=‘ (a loading parameter). This is a
significant departure from the classical Griffith setting
where the only relevant parameter is L=‘0 [4,5,13].
Figure 1 compares the experiment from Fig. 5(d) of

Ref. [20] (1 ) 9:8 ) 50 mm ceramic slab, #T ¼ 380 *C)
with the damage field from a numerical solution of the
gradient damage model. The material properties, commu-
nicated by the authors of Ref. [8], are E ¼ 340 GPa, % ¼
0:22, Gc ¼ 42:47 Jm& 2, "c ¼ 342:2 MPa, and $ ¼ 8 )
10& 6 K& 1, which using (2) gives ‘ ¼ 46 &m and ‘0 ¼
14 &m. As our model is rate independent, its solution is
independent of kc, up to a change of time scale. The
numerical results are obtained through a finite element
discretization and the approach of Refs. [2,17,21]. The
main technical difficulties are the constrained minimiza-
tion of a nonconvex energy and the need for a spatial
discretization adapted to the material length scale ‘.
Cracks correspond to the localized bands where ! goes
from 0 to 1 and back to 0. The qualitative agreement
between experiments and simulation is very good. In par-
ticular, our simulations reproduce the key phenomenon:
the emergence of a periodic array of parallel short cracks at
the initiation and their selective propagation toward the
interior of the slab. Figure 1(c) shows a quantitative com-
parison between the numerical simulation of Fig. 1(a) and

FIG. 1 (color online). Full-scale numerical simulation of a
ceramic slab submitted to a thermal shock. (a) Damage field
from the numerical simulation (blue, ! ¼ 0; red, ! ¼ 1).
(b) Experimental results from Fig. 5(d) of Ref. [20].
(c) Average crack spacing d as a function of their depth a for
(a) and (b). The solid line is an approximate scaling law obtained
in Ref. [13] by imposing a period doubling condition on a
Griffith model. Here, ‘ ¼ 46 &m is the material internal length,
‘0 ¼ Gc=ðE$2#T2Þ ¼ 14 &m the Griffith length (loading pa-
rameter), 2L ¼ 9:8 mm the total depth of the slab. See Fig. 2 for
the meaning of the distributed damage zone.
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Simulation	by	a	gradient	damage	model	(without	plasticity)	of	the	dynamical	propagation	of	
a	crack	in	an	impact	test	(Kalthoff-Winkler	experiment)	
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Figure 8. Energy evolution for the dynamic crack branching problem obtained with several constitutive laws.

separation of the outer linear elastic fracture mechanics problem and the inner crack tip problem in
an asymptotic context. A smaller internal length implies a wider region outside the crack where the
fracture mechanics theory may apply. Meanwhile, a size e�ect is also introduced via this internal
length as it influences the stability of a structure [39]. We admit that the choice of this parameter
is not a simple one and may constitute one of the di�culties in phase-field modeling of fracture
problems.

5.2. Edge-cracked plate under shearing impact

We then consider a pre-notched two-dimensional plane strain plate impacted by a projectile. In the
dynamic fracture community this is often referred to the Kaltho�-Winkler experiment reported by
e.g. [40] where a failure mode transition from brittle to ductile fracture is observed for a high strength
maraging steel when the impact velocity is increased. Due to symmetry, only the upper half part of
the plate will be considered. The geometry and the boundary conditions for the reduced problem
are described in Fig. 9. As in [1, 2], the projectile impact is modeled by a prescribed velocity with
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Figure 9. Geometry and boundary conditions for the edge-cracked plate under shearing impact problem.
Damage field ↵t at t = 8 ⇥ 10�5 s ranging from 0 (gray) to 1 (white).
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no longer valid and the apparent fracture toughness should be adapted to be velocity-dependent.
With the (AT) constitutive law, authors of [1, 38] report a systematic overestimation of the damage
dissipation energy according to (29). Following our discussion in the previous simulation, we suspect
that it is mainly due to the absence of a purely elastic domain and the fact that damage evolves even
in the stress-hardening phase. However in the definition of the fracture toughness this phenomena is
not taken into account [6].

When the prescribed impact velocity is increased from v = 16.5 m/s to v = 100 m/s, successive
crack branching and nucleation of cracks at the lower-right corner due to high tensile stresses are
observed as can be seen from Fig. 13. In Fig. 13b the hydrostatic stress pt = 1

2 tr�t is presented in
the deformed configuration and we verify that no damage is produced in the compression zones. To
visualize the crack, elements with ↵t > 0.9 are hidden in the graphical output. Similar phenomena
have been reported in [2] with v = 50 m/s. Recall that in the Kaltho�-Winkler experiment a failure-
mode transition from mode-I to mode-II is observed when the impact velocity increases. The
discrepancy between our simulation and the experiment is due to the material constitutive behavior.
As a material parameter, the tension-compression formulation [10] coupled with a purely elastic
model favors propagation of mode-I cracks in the direction perpendicular to the maximal principle
stress. On the contrary, the high strength steel used in the experiment develops a considerable plastic
zone along the mode-II crack and an elastic-plastic-damage model should be more suitable [5].
Nevertheless, experimentally more bifurcations are indeed observed for brittle materials such as
glass when the impact velocity is increased, which is known as a velocity e�ect in [46].

(a) Damage field ↵t
ranging from 0 (blue) to 1 (red).

(b) 1
2 tr�t ranging from less than �1 ⇥ 104 MPa
(blue) to more than 1.5 ⇥ 103 MPa (red).

Figure 13. Simulation results at t = 4 ⇥ 10�5 s with an impact speed v = 100 m/s. Tension-compression
asymmetry model [10] is used.

On the other hand, the widely used elastic energy density split proposed in [23] produces di�usive
damage in compression zones. From Fig. 14, we observe appearance of damage at the lower-left
corner and at the lower surface of the initial crack edge, even though they are both under compression
as can be seen in Fig. 14b. This phenomena is conforming to our previous theoretical analysis of
this model on a homogeneous uniaxial compression experiment in Sect. 3.2, where it is found that
damage grows even though the compressive stress is still increasing in its absolute value.

The tension-compression split based on the trace of the total strain [21] is also tested. In [9], the
pure compression version of this model is used to simulate shear cracking behavior in the stone
ashlars. In this dynamic impact problem, we also observe at t ⇡ 7 ⇥ 10�6 s appearance of mode-II
cracks originating from the impacted-edge, see Fig. 15. We conclude that the tension-compression
split (11) could indeed be considered as a material parameter as it represents the fracture mechanism
determined by the microstructure. Note however that the calculation suddenly stops after that time
due to an extremely small CFL time step �tCFL = h/c, which is caused by a highly distorted element
h ! 0 in our updated Lagrangian formulation. The same numerical issue has been reported by [22]
in which an Ogen hyperelastic model is used. Remark that the use of a tension-compression split
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