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Résumé — We describe new Nitsche’s methods extensions applied to unilateral contact for plates. Our
analysis is based on the interpretation of Nitsche’s 3D method with kinematic assumptions of Kirchhoff-
Love or Mindlin–Reissner theories. To simplify the presentation, we focus on the contact for an elastic
plate and a rigid obstacle. We end the paper by presenting and comparing results of our numerical com-
putations which corroborate the efficiency and reliability of our approach.
Mots clés — Nitsche methods, unilateral contact, plates theories.

1 Notations and statement of the problem

1.1 Introduction

The Nitsche method orginally proposed in [9] aims at treating the boundary or interface conditions in
a weak sense, according to the Neumann boundary operator associated to the partial differential equation
and in a consistent formulation. In [3, 8, 12] Nitsche’s method has been extended to discretize contact
and friction conditions. It differs in this aspect from standard penalization techniques which are gene-
rally non-consistent [1, 2, 4]. Moreover, no additional unknown (Lagrange multiplier) is needed and no
discrete inf-sup condition must be fulfilled, contrarily to mixed methods. The purpose of this note is to
present error analysis of conforming finite element methods for classical 2D or 3D plate bending models,
as initiated in [11].

Let us consider a thick or a thin elastic plate i.e. a plane structure for which one dimension, called the
thickness, is small or very small compared to the others. For this kind of structures, starting from a priori
hypotheses on the expression of the displacement fields, a two-dimensional problem is usually derived
from the three-dimensional elasticity formulation by means of integration along the thickness. Then, the
unknown variables are set down on the middle plane of the plate.

1.2 Kinematic of the plate models

Let Ω be an open, bounded, connected subset of the plane R2, with Lipschitz boundary. It will define
the middle plane of the plate it is soppose to be in the plane x3 = 0, in reference configuration. Then, the
plate in its stress free reference configuration coincides with domain :

Ω
ε = Ω × ]− ε , +ε[ =

{
(x1,x2,x3) ∈ R3 / (x1,x2) ∈Ω and x3 ∈ ]−ε ; ε[

}
,

where 2 ε > 0 is called the thickness. For a plate made of a elastic, homogeneous and isotropic material,
which mechanical constants are its Young’s modulus E, its Poisson’s ratio N. As usual, we have : E > 0,
0 ≤ N ≤ 0.5.

Moreover, δi j is the Kronecker’s symbol and the summation convention over repeated indices is
adopted, Greek indices varying in {1,2} and latin indices varying in {1,2,3}. In the following ∂i stands

for the partial derivative with respect to xi and the second derivatives are ∂
2
i j =

∂2

∂xi ∂x j
.

In general plate theory, it is assumed that a mid- plane surface plane can be used to represent the
three-dimensional plate in two-dimensional form. Thus it is usual to consider the following (first order)
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linear approximation of the three-dimensional displacements for x = (x1,x2,x3) ∈ Ωε :
u1(x1,x2,x3) = u1(x1,x2) + x3 θ1(x1,x2),
u2(x1,x2,x3) = u2(x1,x2) + x3 θ2(x1,x2),
u3(x1,x2,x3) = u3(x1,x2).

(1)

In these expressions, u1 and u2 are the membrane displacements of the mid-plane points, u3 is the de-
flection, while θ1, θ2 are the section rotations.In the case of an homogeneous isotropic material, the
variational plate model splits into two independent problems : the first, called the membrane problem,
deals only with membrane displacements, while the second, called the bending problem, concerns deflec-
tion and rotations. In the theory of thick plates, or Mindlin-Reissner model, the normal to the mid-surface
remains straight but not necessarily perpendicular to the mid-surface. In this paper, we shall also consi-
der the Kirchhoff-Love model, which can be seen as a particular case of (1) obtained by introducing the
so-called Kirchhoff-Love assumptions : 

θ1 = −∂1 u3,
θ2 = −∂2 u3,
θ3 = 0.

(2)

Consequently, the deflection is the only unknown for the bending Kirchhoff-Love plate problem and this
displacement is independent of membrane displacements (i.e in-plane displacements of the mid-plane
surface).

1.3 3D-Contact problems : variational formulations

1.3.1 Loading and bilateral boundary conditions imposed

In the same way as with the general three-dimensional solid, the boundary ∂Ωε of the domain Ωε is
assumed to be partitioned into three parts. In line with the particular shape of the domain, these parts are
now the "lateral" one Γε

0, the "upper" one Γε
+ and the "lower" one Γε

−, i.e. :

∂Ω
ε = Γ

ε
0∪Γ

ε
+∪ Γ

ε
−, Γ

ε
0 = ∂Ω× (−ε,ε), Γ

ε
+ = Ω×{ε}, Γ

ε
− = Ω×{−ε}.

We suppose that the boundary Γε
0 (the lateral part of ∂Ωε) consists in two non-overlapping parts Γε

D and
Γε

N . On Γε
D (resp Γε

N) displacements u (resp. tractions) are given.

The following assumptions are adopted :

1. For the sake of simplicity, the body is clamped on Γε
D which is assumed to be a non-zero Lebesgue

measure part of the boundary Γε
0 ⊂ ∂Ωε, that is to say uε = 0 on Γε

D.

2. In addition the body can be subjected to a body force f V ∈ L2(Ωε)3 (such as gravity).

3. As far as loading is concerned, the upper part, Γε
+, is loaded by a surface force `ε ∈ L2(Γε

+), and
bottom part Γε

− is for this moment free of surface load.

Remark 1.1. This choice of boundary conditions is not restrictive : only very slight changes would result
from applying clamping conditions on a non zero measure part of Γε

0 and stress free conditions on the
complementary.
As the plate is assumed to be clamped on a non-zero Lebesgue measure part of the boundary ∂Ωε denoted
Γε

D, thus the space of admissible displacements is :

Vε = { v ∈ H1(Ωε)3 / v = 0 on Γ
ε
D }. (3)

1.3.2 Unilateral boundary conditions imposed and week form

Let us now introduce the static equation with Signorini conditions along the plate. We denote by Γε
C

a portion of the boundary of the body which is a candidate contact surface with an outward unit normal
vector ν. The actual surface on which the body comes into contact with the obstacle is not known in
advance, but is assumed contained in the portion Γε

C of Γε
−.
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We assume that the plate motion is limited by a rigid obstacle, located below the plate, denoted by

g : Ω
ε −→ R̄ := R∪{−∞,+∞}.

So, the displacement is constrained to belong to the convex set Kε ⊂ Vε given by

Kε = {v ∈ Vε / vν ≤ g on Ω
ε}, (4)

We define on the boundary of Ωε an outward unit normal vector ν and τ a tangential unit vector such
(ν,τ) soit un repère direct.

The tridimensionnal contact problem in linear elasticity consists in finding the displacement field u
and the reaction λ verifying the strong equations (5) and the contact conditions described hereafter :{

−divσ(u) = f V in Ωε

σ(u)ν = ` on Γε
+

(5)

where σ stands for the stress tensor field and div denotes the divergence operator of tensor valued func-

tions. The notation γ represents the linearized strain tensor field, i.e. : γi j(u) =
1
2
(∂iu j +∂ jui) . The Hoo-

ke’s law for an isotropic material is expressed thanks to the fourth order symmetric elasticity Hooke
tensor S on Ωε having the usual uniform ellipticity and boundedness property :σ = Sγ.
We decompose the displacement field u : Ωε −→ R3 and density of surface forces σ(u)ν : Γ

ε
− −→ R

thanks to (ν,τ) :
u = uνν+uτ and σ(u)ν = σν(u)ν+στ(u).

The unilateral contact conditions (or classical Kuhn-Tucker conditions) are given by :

uν ≤ g, σν(u)≤ 0 and (uν−g)σν(u) = 0 on Γε
−. (6)

In the frictionless contact case this condition is simply i.e.

στ(u) = 0, on Γε
−. (7)

The Coulomb friction condition on Γε
− reads :{ ‖στ(u)‖ ≤Fσν(u) if uτ = 0

στ(u) = Fσν(u)
uτ

‖uτ‖
otherwise . (8)

where F ≥ 0 is the Coulomb friction coefficient, and ‖.‖ stands for the euclidean norm in R2.

From the Green formula and equations (5), we get the weak variational formulation for every v ∈ Vε :

∫
Ωε

σ(u) : γ(v) dΩ−
∫

Γε
−

σ(u) · v dΓ =
∫

Ωε

f V · v dΩ+
∫

Γε
+

` · v dΓ. (9)

Remark 1.2. The Korn’s inequality which exists for this problem is simply adapted from the classical
one, which makes it possible to prove the existence and uniqueness of the solution to problem (9) submit-
ted to (6) with any fixed ε > 0, thanks to the Lax-Milgram lemma. For the general problem (9) submitted
to (8) the existence of a solution is available only for small Coulomb friction coefficient F ≥ 0.

2 3D-Contact problems : Variational formulation using Nitsche’s method

A reformulation of the previous contact conditions comes from the augmented Lagrangian formu-
lation of contact problems. Let r be a given real positive number. As in [1, 2, 3, 4, 5, 6], the contact
conditions (6) are rewritten as :

σν(u) = [σν(u)+ r(g−uν)]− , (10)
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where we denote [x]− =

{
0 if x≥ 0
x otherwise

.

We could also reformulate the Coulomb friction condition using the simple ball projection PB(0,s)
defined by :

PB(0,s)(q) =

 Πν(q) if ‖Πν(q)‖ ≤ s,

s
Πν(q)
‖Πν(q)‖

otherwise,

where the tangential projection tensor is Πν = I−ν⊗ν, and I is the identity tensor.
In fact, for a given positive function r, the friction condition is equivalent to the non-smooth equation :

στ(u) = PB(0,−F [στ(u)+r(g−uν)]−)
(στ(u)− ruτ). (11)

Let now O ∈ R be a fixed parameter that we use to recover different variants of the Nitsche method,
as in the 3D linear elastic setting (see, e.g., [4]). We inject finally the expressions (10) and (11) into
(9) and obtain, formally, our Nitsche’s based formulation for frictional contact. In particulier, we get for
O = 1,0,−1 a symmetric, non-symmetric, and anti-symmetric method :∫

Γε
−

σ(u) · v dΓ =
∫

Γε
−

σν(u)vν(v) dΓ+
∫

Γε
−

στ(u) · vτ dΓ (12)

with the normal contact term (obtained from (10) and the classical decomposition introduced in [4, 6]) :∫
Γε
−

λνvν(v) dΓ =
1
r

∫
Γε
−

λν (rvν−Oσν(v)) dΓ+
O

r

∫
Γε
−

λνσν(v) dΓ

=
1
r

∫
Ω

[λν + r(g−uν)]− (rvν−Oσν(v))
∣∣
x3=−ε

dΓ+
O

r

∫
Ω

λνσν(v)
∣∣
x3=−ε

dΓ

(13)

and with frictional contact term :∫
Γε
−

λτ · vτ dΓ =
∫

Γε
−

PB(0,−F [λν+r(g−uν)]−)
(λ− ruτ) · vτ dΓ (14)

notting that :

vτ = v− vνν = v− (vανα− x3∂αv3να + v3ν3)ν,

uτ = u−uνν = u− (uανα− x3∂αu3να +u3ν3)ν,

Now we insert the expressions (13) and (14) of (12) into variational problem (9), to write the so
called Nitsche-based method :

Find a sufficiently regular u ∈ Vε such that for all sufficiently regular v ∈ Vε :∫
Ωε

σ(u) : γ(v) dΩ+
1
r

∫
Ω

[σν(u)+ r(g−uν)]− (rvν−Oσν(v))
∣∣
x3=−ε

dΓ+
O

r

∫
Ω

σν(u)σν(v)
∣∣
x3=−ε

dΓ

+
∫

Γε
−

PB(0,−F [σν(u)+r(g−uν)]−)
(σ(u)− ruτ) · vτ dΓ =

∫
Ωε

f V · v dΩ+
∫

Γε
+

` · v dΓ.

(15)

3 Discrete Nitsche’s variational formulation in Ωε

In what follows, Ciarlet’s notations [7] are used. Let Th be a family of triangulations of the domain
Ωε such that Ωε =

⋃
K∈Th

K. Let hK be the diameter of K ∈ Th and h = maxK∈Th hK . The family of

triangulations is assumed to be regular, i.e. it exists C > 0 such that
hK

ρK
≤C where ρK denotes the radius

of the ball inscribed in K. We suppose that the mesh is quasi uniform in the sense that it exists ζ > 0 a
constant such that ∀K ∈Th, hK ≥ ζ h. We introduce Vε,h ⊂Vε a family of finite element spaces indexed
by h coming from some order k ≥ 1 finite element method defined on Th. Furthermore we suppose
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that this family is conformal to the subdivision of the boundary into Γε
D, Γε

N and Γε
C (i.e., a face of an

element K ∈ Th is not allowed to have simultaneous non-empty intersection with more than one part of
the subdivision). We choose a standard Pk-Lagrange finite element method of degree k with k = 1 or
k = 2, i.e. :

Vε,h := {v ∈ (C 0(Ω̄ε))3 : v|K ∈ (Pk(K))3, ∀K ∈Th, v = 0 on Γ
ε
D}.

Then, a finite element approximation of our Nitsche-based method (15) reads as :



Find uh ∈ Vε,h such that :∫
Ωε

σ(uh) : γ(vh) dΩ+
1
r

∫
Ω

[
σν(u)+ r(g−uh

ν)
]
−

(
rvh

ν−Oσν(vh)
)∣∣∣∣

x3=−ε

dΓ+
O

r

∫
Ω

σν(u)σν(vh)
∣∣
x3=−ε

dΓ

+
∫

Γε
−

PB(0,−F [σν(u)+r(g−uh
ν)]−)

(σ(u)− ruh
τ) · vh

τ dΓ =
∫

Ωε

f V · vh dΩ+
∫

Γε
+

` · vh dΓ, ∀vh ∈ Vε,h.

(16)

3.1 Variationnal formulation for 2D-bilaplacian plate contact problem and discrete Nit-
sche’s method

In this section, we consider a 2D-bilaplacian Kirchhoff plates constrained by a rigid obstacle. We
follow R. STENBERG et al. [11] to implement a Nitsche-type method with only the vertical displacement
(ũ := u3 : Ω −→ R) variable as an unknown. Therefore, we only address this formulation to compare
numerical results we obtain below with 3D-models of plate. So, let us first recall the Kirchhoff-Love
frictionless contact problem for a thin plate. The variational formulation for a Kirchhoff-Love thin elastic
clamped/free plate above an rigid obstacle consists in :

Find ũ ∈ K̃ such that for any w̃ ∈ K̃

∫
Ω

D
2ε

[
(1−N) ∂

2
αβ

ũ + ν ∆ũ δαβ

]
∂

2
αβ

w̃ dx−
∫

Ω

σ̃νw̃dx =
∫

Ω

f̃ w̃ dx,
(17)

with f̃ =
∫

ε

−ε

f V
3 dx3 is the resulting transverse loading, ε > 0 is assume to be constant all along the

plate. And the bending modulus is D =
2 E ε3

3 (1−N2)
, for a plate made of a homogeneous and isotropic

material. The plate is assumed to be clamped on a non-zero Lebesgue measure part of the boundary ∂Ω.
Then the convex set of admissible displacements is K̃ ⊂ Ṽ given by K̃ = {w̃ ∈ Ṽ / w̃ ≤ g on Ω} ,
and Ṽ = { w̃ ∈H2(Ω) / w̃(x) = 0 = ∂nw̃(x) , ∀x ∈ Γc } , where ∂nw̃ is the normal derivative along
Γc .

Let T̃h be a conforming shape regular triangulation of Ω which we assume to be polygonal, and the
finite element subspace associated is Ṽε,h ⊂ Ṽ. The approximation properties of the primal variable and
the Nitsche term are balanced when the polynomial order of the latter is four degrees smaller than that of
the displacement variable, for example, when the Argyris element is coupled with a piecewise linear and
discontinuous approximation of the Lagrange multiplier. A reformulation of the normal contact condi-
tions with a Nitsche-type method consists in implicit the discret Lagrange multiplier from the previous
formulation of contact problem (17). As the contact reaction is a measure possibly singular, that is why
we consider, as in [11], the following L2-approximation of the reaction force :

σ̃
πh

ν (u)
∣∣∣
K
=

1
κ+ r̃h4

K

[
π

h(g)|K−π
h(ũh)|K + r̃h4

K(π
h(∆2ũh)−π

h( f̃ ))
]
−
∀K ∈ T̃h (18)

where πh is the L2-projection, κ ≥ 0 is the classical penalization parameter, and r̃ ≥ 0 is the stabi-
lisation or Nitsche parameter. This hybrid formulation (18) of the Lagrange multiplier corresponds to a
pure penalisation approch when s̃ = 0, and a pure Nitsche’s method if κ = 0. We introduce the function
H : Ω−→ R such that H

∣∣
K = hK , for all K ∈ T̃h. Thus, a finite element approximation of (17) based on

hybrid Nitsche method (18) is :
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 Find ũh ∈ Ṽh such that :

ãh(ũh, ṽh; ũh) = L̃h(ṽh; ũh) ∀ṽh ∈ Ṽh.
(19)

where

ãh(ũh, ṽh; ũh) = ã(ũh, ṽh)+
∫

ΩC(w̃h)

1
κ+ r̃H4 ũh ṽh dx −

∫
ΩC(w̃h)

r̃H4

κ+ r̃H4 D∆
2(ũh) ṽh dx

−
∫

ΩC(w̃h)

r̃H4

κ+ r̃H4 D∆
2(ṽh) ũh dx−

∫
ΩC(w̃h)

κr̃H4

κ+ r̃H4 D2
∆

2(ũh) ∆
2ṽh dx

−
∫

Ω\ΩC(w̃h)
κH4 D2

∆
2(ũh) ∆

2ṽh dx

L̃h(ṽh; ũh) =
∫

Ω

f̃ ṽh dx+
∫

ΩC(w̃h)

1
κ+ r̃H4 g ṽh dx

−
∫

ΩC(w̃h)

r̃H4

κ+ r̃H4 D∆
2(ṽh) g dx−

∫
ΩC(w̃h)

r̃H4

κ+ r̃H4 f ṽh dx −
∫

ΩC(w̃h)

r̃κH4

κ+ r̃H4 D∆
2(ṽh) f dx

−
∫

Ω\ΩC(w̃h)
κH4 D f̃ ∆

2ṽh dx

The contact set ΩC(w̃h) above is given by ΩC(w̃h)= {(x,y)∈Ω : σ̃h
ν(w̃

h)> 0}, with σ̃h
ν(w̃

h) denoting
the discrete reaction force given by σ̃h

ν(w̃
h) = 1

κ+r̃H4

[
g− w̃h + r̃H4(∆2w̃h− f̃ )

]
−.

The practical solution algorithm for Problem (16) is a fixed point process where at each step the
contact set ΩC is approximated using the displacement field from the previous iteration so that system
(16) becomes linear. The process is terminated as soon as the norm of the displacement field is below a
predetermined tolerance TOL > 0. The stopping criterion is formulated with respect to the strain energy
norm ‖w‖ã =

√
ã(w,w) .

4 Numerical results

We end this note with numerical results in order to test differents models. The corresponding test-case
concerns a plate Ω = [0,10]× [0,10] clamped along its boundary ∂Ω, of thickness 2ε = 0.01mm. with
Young modulus E = 2×105 GPa, and Poisson ratio N = 0.3. The plate motion is above a rigid obstacle,
x3 = −1, and the plate is submited to a vertical constant and homogenous forces f V = (0,0,−0.02/2ε)
GPa in 3D and f̃ = −0.02 GPa, in 2D. We compare our results as on Figure 3 with (16) and those
obtained with the formulation (19) from [11] on Figure 2 or those obtained with the classical Nitsche 3D
method on Figure 1.

Other numerical results will be presented during the congress, in particular an analysis of conver-
gences of the various approaches proposed above.
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FIGURE 1 – Solution 3D with classical Nitsche method

FIGURE 2 – Solution 2D Kirchoff-Love with STENBERG method

FIGURE 3 – Solution 2D Kirchoff-Love with Nitsche method
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