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Abstract — In this paper, the superelasticity effects of architected shape memory alloys (SMAs) are
studied by the multilevel finite element method (FE2), which couples the responses of both the cellular
level and structural level by considering their real-time information interactions. Firstly, a parametric
analysis for the void fraction, the total stiffness, the hysteresis effect and the mass of the SMAs is con-
ducted at the cellular level. Then, through a multiscale three point bending test, it is observed that the
structure inherits both the hysteresis effect and the superelasticity from the architected cellular SMAs.
Keywords — shape memory alloys, architected cellular material, numerical homogenization.

1 Introduction

Architected cellular materials are widely used for their high strength-to-weight ratio and high energy
absorption performance. Thanks to the highly developed additive manufacturing techniques, such as 3D
printing (Ngo et al. [1]; Mostafaei et al. [2]), the manufacturing of architected cellular materials is no
longer impossible. Users can design a cellular material with a certain behavior by tuning its cellular
parameters, such as the geometry, components, local material properties, etc.

Architected cellular materials’ functionality could be extended by combining the features of various
materials, such as shape memory alloys (SMAs). It is well known that shape memory alloys, such as
NiTi, can endure large deformation and recover their initial shape after unloading (see for example the
reviews of Patoor et al. [3], Lagoudas et al. [4] and Cisse et al. [5]). This superelasticity effect brings high
performance to SMA in energy absorption. When the given load reaches a critical level in a superelastic
test, SMA will apparently soften due to its inner phase transformation. This behavior enables SMA to
absorb the external energy as much as possible and prevents material from crushing or buckling. Such
a kind of response is very similar to the ideal response of the cellular material designed by Schaedler et
al. [6]. Meanwhile, the hysteresis effects of SMA can dissipate a large amount of energy. All mentioned
features of SMAs meet the requirements of an architected structure for energy absorption applications
very well. In addition, taking advantage of the lightweight and shape memory effect, architected SMAs
may be designed for advanced applications in aerospace, civil engineering, etc.

Considering the scale separation between the microscopic cellular scale and macroscopic structural
scale, however, it is difficult to predict the structural response by a unit cell, because the stress-strain
states of the macroscopic structure are usually not uniform and the deformations at the microscopic level
could be totally different. Thus, it is therefore necessary to investigate the behavior of architected SMAs
with a multilevel finite element (FE2) model [7, 8]. In this work, FE2 is adopted, which shows good
performance on multiscale modeling of SMA-based materials [9, 10]. Both the structural level and the
cellular level are simulated by the finite element method (FEM). Two levels are fully coupled and com-
puted simultaneously, where the unknown constitutive behaviors on the structure level are represented
by the effective behaviors of homogenized representative volume elements (RVEs), and the strain states
of RVEs are given by the associated integration points. Towards a better understanding of the studied ar-
chitected SMA, unit cells (RVEs) with different void fractions are introduced to study the superelasticity
effect of the materials and structures.
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2 Cellular Response

The SMA model, proposed by Chemisky et al. [11], is adopted for the thermomechanical behavior
modeling of the architected SMA. This model follows the work of Peultier et al. [12], who proposed
a macroscopic phenomenological SMA approach based on the Gibbs free energy. This model was im-
plemented on ABAQUS via user-defined materials (UMAT) and validated by experiments. It was later
improved by Chemisky and Duval; see Chemisky et al. [11]; Duval et al. [13]. The SMA constitutive
model used here is able to describe four different strain mechanisms: the elastic strain εe, the thermal
expansion strain εth, the martensitic transformation strain εtr and the twin accommodation strain εtw. To
this end, the total strain is decomposed in the following form:

ε= εe +εth +εtr +εtw, (1)

The implementation of this model in a finite element code is realized, see Chemisky et al. [11] and Duval
et al. [13] for more details about the implementation process,

Five types of RVEs with different void volume factions ξ are studied, as illustrated in Figure 1.
The size of the cube is given by 1 mm × 1 mm × 1 mm. It is formed by excavating cylindrical holes
through the center of each face of a cube SMA. Following the constitutive model introduced previously,
the material parameters of a conventional NiTi alloy are given in Table 1, which are identified with the
experimental data of Sittner et al. [14].
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Figure 1: Meshes for architected SMA RVEs with different void volume fractions ξ.

Table 1: Material parameters for SMA.

E (MPa) 39,500 Br (MPa °C−1) 7 H f (MPa) 2
ν 0.3 B f (MPa °C−1) 7 Htr (MPa) 1635
εT

trac 0.056 Ms (°C) −80 Htw (MPa) 25,000
εT FA

trac 0.053 A f (°C) −2 Hs (MPa) 68.5
εT

comp 0.044 Fε (MPa) 220

According to computational homogenization theory, periodic boundary conditions are introduced
into RVE by the multi-point constraints (MPCs) on ABAQUS:

∆u+−∆u− = ∆ε̄·(x+−x−) on ∂ω, (2)

where u is the displacement vector, x is the coordinates of nodes and ε̄ is the strain load applied on RVE.
The notations + and − denote the nodes on opposite boundaries; the notation ∆ represents the incremen-
tal case. A tensile strain up to 10% in the Y direction is applied on RVE at a constant temperature of 30
°C. Figure 2a gives the curves of averaged stress versus the averaged stain along the loading direction,
simulated by the above RVEs respectively. The absolute value of stress in different RVEs at a certain
strain level increases along with the decreasing of the void volume fraction, as depicted in Figure 2a.
Figure 2b gives the martensitic volume fraction averaged over SMA versus the strain averaged over the
cube. The martensitic volume fraction f̄t increases along with the increasing of the strain level, but stops
before it reaches one. Namely, each RVE has a certain maximum f̄t value in this loading case.
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Figure 2: (a) the evolution of the averaged stress-strain curves simulated by RVEs with different void
fractions; (b) the evolution of the martensitic volume fraction versus the averaged strain curves simulated
by RVEs with different void fractions.

3 Structural Response

In this section, the structural responses of the architected SMAs are studied by FE2 which shows good
ability in modeling the superelasticity and the shape memory effect of the SMA composites [9, 10].
The constitutive behavior of the macroscopic structure is represented by the computational homogenized
RVEs in the last subsection. A 3D beam subjected to three-point bending load is shown in Figure 3.
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Figure 3: Geometry and boundary conditions for the three-point bending beam.

This beam is composed of architected SMA. The width, length and height of the beam are 5 mm, 20
mm and 5 mm, respectively. Edge Y = 5 mm, Z = 10 mm is fixed in the Y and Z directions. A displace-
ment load up to 0.5 mm in the Y direction is applied on the edges Y = Z = 0 mm and Z = 20 mm, Y = 0
mm. Node X = 0 mm, Y = 5 mm, Z = 10 mm is fixed in the X direction in order to eliminate the rigid
body displacement in the X direction. Considering the symmetry of the structure and the boundaries,
only the left half of the structure is simulated in order to reduce the computation cost. To do this, an ad-
ditional displacement constraint in the Z direction is given on face Z = 10 mm. Since the deformation
in the X direction is not obvious in the three-point bending test, one element is used in this direction.
Each edge in the Y direction is meshed by two elements and in the Z direction by four elements. The
continuum 3D solid element with incompatible modes (labeled C3D8I in ABAQUS) is adopted for the
modeling of the macroscopic beam since it is enhanced by incompatible modes to improve its bending
behavior. The RVEs studied in the last section are used herein with void volume fractions ξ of 40.7%,
72.5% and 82.2%, respectively.

The macroscopic constitutive behavior on each integration point is to be represented by the effective
behavior of the associated RVE at each macroscopic increment. A brief flow diagram, showing how
this multiscale problem is solved, is illustrated in Figure 4. Specifically, the effective behavior of RVE
is computed by seeking the relations between the averaged stresses and averaged strains over the RVE
via a series of loading tests. Once the effective behavior is obtained, the macroscopic problem is to be
solved. Considering the nonlinear response of the RVE during loading, the macroscopic convergence
has to be checked in each macroscopic iteration of the Newton–Raphson framework. In an iteration, the
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strain states of RVEs are updated with the macroscopic strains, and in return, the macroscopic stresses
are renewed by updating the averaged stress of the RVE at the new strain states.
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Figure 4: The nonlinear interaction between two scales in the Newton–Raphson framework.

Figure 5 shows the nonlinear response of the macroscopic beam structure with three different void
fractions. The linear response is observed at the very beginning, and the microscopic structures deform
without any phase transformation. As the loading increases, the forward phase transformation begins
over the high stress area of the beam. The structure inherits both the hysteresis effect and the superelas-
ticity from the architected SMA cells.
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Figure 5: Force-displacement curve of the boundary Z = 20 mm, Y = 0 mm on the bending beam.

4 Conclusion

In this paper, the superelasticity behavior of the architected SMA structure is studied with a 3D multiscale
finite element model. The superelasticity responses and the hysteresis effects are observed in RVEs.
The effect of changing the void fraction on the stiffness, the maximum martensitic volume fraction and
hysteresis effect are discussed in detail. Moreover, a multiscale analysis is carried out to model the
structural response, as well as the cellular response. Structural responses with different void fractions
are studied, which gives a good reference of the void fractions’ influences on structural stiffness and
hysteresis.
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