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Abstract —A two-dimension extension of the Self-organized Gradient Percolation (SGP) method 
initially developed for the one-dimensional simulation is proposed. The initialization in the two 
directions is considered as the analytic solution of the 2D (homogeneous) diffusion equation. The 
evolution of the saturation front is assumed to be the evolution of both standard deviations in each 
direction. The validation of the implementation is done by comparisons between SGP and finite element 
results. 
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1. Introduction 

To simulate the unsaturated (non-reactive) impregnation in a porous medium, classical numerical 
methods (FEM, theta-method, etc.) have often been employed to solve the Richards’ equation [1], [2]. 
Yet, the CPU time and spurious oscillations become prohibitive, as for instance, when the impregnation 
is coupled with chemical reactions. That is why a drastically different, and more reliable approach, 
called Self-organized Gradient Percolation (SGP) method, was proposed [3].  

The initialization of the algorithm is driven by an analytic solution of the (homogeneous) diffusion 
equation. It is a convolution between a Probability Density Function (PDF) and a smoothing function 
[4]. The evolution of the capillary pressure profiles with time is reproduced by the self-evolution of the 
standard deviation of the PDF. To test this model, the capillary pressure profiles and the mass gain curve 
have been confronted with those obtained by FEM and experimental measurement, respectively [3].  

The main goal of the present work is to extend the SGP method to the 2D unsaturated impregnation 
only considering the non-reactive case. The two-dimensional SGP algorithm has the same structure than 
the one-dimensional one. On the mathematical side, the analytic form is a convolution between a PDF 
of two directions and a smoothing function. In addition, the evolution of the saturation front is proposed 
to be the evolution of the two standard deviations of the PDF in each direction. The visualizations and 
comparisons between the numerical results from SGP method and FEM are given. 

2. Self-organized Gradient Percolation (SGP) method for impregnation 

The gradient percolation method is a probabilistic approach to predict a spatial evolution. The idea 
for using this method here is to avoid the numerical difficulties of the resolution of  the Richards’ 
equation derived from the mass balance combined with Darcy’s law [3]. Richards’ equation is a 
nonlinear Partial Differential Equation (PDE), which requires a small-time increment and an 
appropriate fine space discretization to make sure the accuracy of the results. However, a small-time 
increment leads to a high computational cost and, moreover, a very small time-increment can give rise 
to spurious oscillations that impact the accuracy of the results [5]. The main goal for the development 
of this method is to reduce the CPU time and the number of parameters actually used for classical 
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models. The Self-organized Gradient Percolation (SGP) method, which is based on the gradient 
percolation method, has been developed to reach these goals. 

Two fundamental types of percolation are broadly used to simulate physical phenomena, the bond 
percolation and the site percolation [6]. The site percolation can be applied to the simulation of the non-
reactive impregnation process for the determination of the saturation, first considered as a state variable 
describing the state (“occupied” or “empty”) of each local pore of the media.  

Considering a random network defined by numerous cells/squares, function 𝑋𝑋(𝑧𝑧), where 𝑧𝑧 is the 
position of the cell, is a random value uniformly distributed on the interval [0,1]. A site declared to be 
“occupied” or to be “empty” by the liquid is defined in comparison with constant probability 𝑝𝑝 as: 

• site 𝑧𝑧 is “occupied” when 𝑋𝑋(𝑧𝑧) ≥ 𝑝𝑝; 
• site 𝑧𝑧 is “empty” otherwise. 

In classical percolation model, probability 𝑝𝑝, which indicates the state of a site, is independent of the 
site, it is the same value for the whole domain. However, physics implies that the state of a site is given 
by capillary pressure, which is not constant on the lattice.  

From physics point of view, the Capillary Pressure Curve (CPC) is at equilibrium only under the 
gravity field. The capillary pressure is the equilibrium pressure, which is determined by the difference 
between the non-wetting and the wetting phases. In the capillary rising test, the saturation profile along 
the vertical direction (Figure 1), considered as a function of the level (height) with respect to the liquid 
regarding Jurin’s law, is an image of the CPC at each time 𝑡𝑡. That is why we propose to transform 
probability 𝑝𝑝 into a function of the location of the site. This can be done by adapting gradient percolation 
theory developed by Pierre Nolin [7]. Choosing 𝑝𝑝 as a function of the location allows reproducing the 
impregnation gradient, but the results will not respect the continuity of the liquid phase. Moreover, it is 
impossible to manage the boundary conditions. It is thus proposed to define a convolution product to 
satisfy the continuity and the possibility to take into account various boundary conditions. Finally, the 
local saturation is obtained through two steps: (1) local state 𝑋𝑋 is determined by the classical percolation 
and (2) employing the convolution product gives: 

𝑆𝑆(𝑧𝑧) = 𝑋𝑋(𝑧𝑧) ∗ 𝛿𝛿(𝑧𝑧) (1) 

where 〈∗〉 is the convolution operator and 𝛿𝛿 is a smoothing function (spatial weighted average). 

 

Figure 1 – The saturation profile as a probability density function 

The saturation profile at initial time 𝑡𝑡0 is then proposed by the following expression [4]: 
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𝑋𝑋�𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐, 𝑡𝑡0� = 𝑆𝑆𝑟𝑟 + (𝑆𝑆𝑠𝑠 − 𝑆𝑆𝑟𝑟)𝑒𝑒𝑒𝑒𝑝𝑝�−
�𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡0

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑚𝑚

𝑚𝑚𝜎𝜎𝑚𝑚
� (2) 

where 𝑆𝑆𝑟𝑟 and 𝑆𝑆𝑠𝑠 mean the residual and maximum saturation, respectively, 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 is the local capillary 
pressure, 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡0

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚  is the minimum pore pressure to initiate the impregnation, 𝜎𝜎 is the standard deviation 
of the PDF, 𝑚𝑚 is the empirical parameter to switch between probability distributions to fit the CPC (e.g. 
𝑚𝑚 = 1 and 𝑚𝑚 = 2 designate Laplace and Gaussian distributions, respectively). From the physics point 
of view, 𝑚𝑚 is a dimensionless parameter which depends on the porosity network (such as porosity, 
tortuosity, etc.). 

To reproduce the physics of impregnation, it is necessary that the model can evolve autonomously with 
time following the physical laws of the problem. In order to ensure this self-evolution along time, a 
relationship between the standard deviation and the capillary pressure is proposed [3]: 

𝜎𝜎𝑛𝑛�𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐� = 𝜎𝜎𝑛𝑛−1�𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐�+ 𝐴𝐴�
𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡0
𝑆𝑆

𝑃𝑃ℎ,𝑛𝑛
− 1� (3) 

where 𝑛𝑛 designates the time increment and 𝐴𝐴 designates a kinetic constant (𝑚𝑚 ∙ 𝑠𝑠−1). 

Finally, there are only three parameters required for the SGP algorithm: 𝐴𝐴 (𝑚𝑚 ∙ 𝑠𝑠−1), 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡0
𝑆𝑆  (Pa) and 

𝑚𝑚 (dimensionless). To identify these three parameters, the inverse identification method [3] is employed 
by fitting the mass gain curve obtained from the SGP method with the experimental one and then is 
validated by comparison with FEM simulation if the capillary pressure profiles are known. Then, 𝐴𝐴 is 
closed to the intrinsic permeability (but not fully explained today)  while 𝑚𝑚 is directly linked to the 
shape of the capillary pressure curve and can be taken as the inverse of the parameter of van Genuchten’s 
model. Therefore, only unknown 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡0

𝑆𝑆  is the minimum pore pressure to initiate impregnation. 

3. SGP method for 2D problem 

Since the SGP algorithm presented above for the (quasi) one-dimensional case permits to reduce the 
CPU time and to avoid the spurious oscillations [3]. Its extension to the 2D case thus keeps working on 
and is straightforward to construct: the main parameter will no longer be the height but the total pressure. 
It is to note that the Richards’ equation, where the height parameter is replaced by the total pressure 
parameter since from the physics point of view in the general case, is written as [3]: 

ϕ
𝜕𝜕𝑆𝑆
𝜕𝜕𝑡𝑡

= 𝑑𝑑𝑑𝑑𝑑𝑑 �
𝐾𝐾(𝑆𝑆)
𝜂𝜂

𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑(𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡)� (4) 

where 𝜙𝜙 is the porosity (dimensionless), 𝑆𝑆 is the saturation (dimensionless), 𝐾𝐾(𝑆𝑆) is the nonlinear 
function of saturation (𝑚𝑚2), 𝜂𝜂 is the dynamic viscosity (𝑃𝑃𝑔𝑔 ∙ 𝑠𝑠), 𝜌𝜌𝑊𝑊 is the mass density of the wetting 
liquid (𝑘𝑘𝑔𝑔 ∙ 𝑚𝑚−3); 𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑(𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡) = 𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑�𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 + 𝜌𝜌𝑊𝑊𝑔𝑔𝑧𝑧� is not a spatial description, but rather depends 
on  the direction of gravity, where 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 is the total pressure (𝑃𝑃𝑔𝑔),  𝑔𝑔 is acceleration due to the gravity 
(𝑚𝑚 ∙ 𝑠𝑠−2) and 𝑧𝑧 is the height along the gravity direction (𝑚𝑚).  

3.1. Stepwise modelling procedure 

Three main steps of the 2D SGP algorithm are presented as follows. 
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Step 1: Based on the main idea of solving the 1D (homogeneous) diffusion equation [3], the analytic 
solution of the 2D case, even in the general case, is pointed out to be a convolution between a Probability 
Density Function and a smoothing function. To be physically meaningful, the initialization is thus taken 
to be the analytic solution of the (homogeneous) diffusion equation (only considering initial time 𝑡𝑡0) in 
the vertical and horizontal directions (𝑧𝑧1, 𝑧𝑧2) as the following: 

𝑋𝑋(𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡(𝑧𝑧1),𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡(𝑧𝑧2), 𝑡𝑡0) = 𝑆𝑆𝑟𝑟 + (𝑆𝑆𝑠𝑠 − 𝑆𝑆𝑟𝑟)𝑒𝑒𝑒𝑒𝑝𝑝 �−
�𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡(𝑧𝑧1) − 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡0

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚�
𝑚𝑚

𝑚𝑚𝜎𝜎(𝑧𝑧1)𝑚𝑚 −
�𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡(𝑧𝑧2) − 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡0

𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚�
𝑚𝑚

𝑚𝑚𝜎𝜎(𝑧𝑧2)𝑚𝑚 � (5) 

where 𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 ,𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡0
𝑆𝑆𝑚𝑚𝑔𝑔𝑒𝑒   mean the total pressure and the minimum pore pressure to start the impregnation 

assuming to be the same in each direction, respectively, 𝑚𝑚 is the empirical parameters defining the shape 
of the distribution in each direction and 𝜎𝜎(𝑧𝑧𝑖𝑖) is the standard deviation function along the 𝑑𝑑-direction. 

To take into account Eq. (1) and Eq. (5), we employ the dedicate function “norminv” in Matlab and then 
a multistate gradient percolation model is then given. 

Step 2: In the next time steps, we assumed that the evolution of the capillary front along each 
direction is the evolution of each standard deviation, respectively. In particular, standard deviation 
𝜎𝜎𝑛𝑛(𝑧𝑧𝑖𝑖) along 𝑑𝑑-direction at timestep 𝑛𝑛 can be written as: 

𝜎𝜎𝑛𝑛(𝑧𝑧𝑖𝑖)  = 𝜎𝜎𝑛𝑛−1(𝑧𝑧𝑖𝑖)  + 𝛼𝛼�𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 (𝑧𝑧𝑖𝑖)� 
(6) 

where 𝛼𝛼�𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 (𝑧𝑧𝑖𝑖)� means the evolution of the standard deviation at timestep 𝑛𝑛 along 𝑑𝑑-direction. The 
link with the Poiseuille’s equation has been pointed out in the 1D capillary rising case, which gives: 

𝛼𝛼�𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 (𝑧𝑧𝑖𝑖)� =
𝛾𝛾𝐷𝐷2

32𝜂𝜂
𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 (𝑧𝑧𝑖𝑖) (7) 

where 𝐴𝐴 = 𝛾𝛾𝐷𝐷2 32𝜂𝜂⁄  depends on capillary diameter 𝐷𝐷 (𝑚𝑚) and 𝛾𝛾 is the surface tension (𝑁𝑁 𝑚𝑚⁄ ). 

Step 3: In the final step, note that the motion of liquid here is due to driving force 
𝑔𝑔𝑔𝑔𝑔𝑔𝑑𝑑�𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐 + 𝜌𝜌𝑊𝑊𝑔𝑔𝑧𝑧�. Obviously, only in the capillary rising case, the simulation will stop when there 
is no difference between capillary pressure and hydrostatic pressure [3]. Nevertheless, in the general 
case, the simulation will not be able to stop until there is no more liquid on the boundary of the source. 
For example, the horizontal impregnation is never stopped, since there is no effect of the gravity in this 
direction. In the numerical practice, we thus suggest comparing the difference between the mass of liquid 
in the container (denoted Π) and the mass gain in time in the porous medium (denoted 𝑚𝑚𝑡𝑡). It leads to 
that the SGP algorithm will stop when there is no difference in this comparison. 

3.2. Boundary conditions 

𝜕𝜕Ω𝑖𝑖 corresponds to the three types of boundary conditions [3]. At the initial timestep, depending on 
the treated problem, it is considered that almost one surface of the porous sample is in contact with the 
surface of liquid. This leads to impose that concerning row (first row) of the matrix is fully filled with 
liquid. A specific boundary condition will be applied on each interface. The choice of the boundary 
conditions depends on the interpretation of the physical phenomena. 
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Figure 2 – Flowchart of the SGP algorithm for the 2D problem. 

4. Application  

In order to numerically simulate the test using FEM and the SGP algorithm, we decided to build the 
two models implemented both in (2D) Abaqus standard (v. 6.14) and Matlab (v. R2019a) software, 
respectively. To compare the CPU time of the two methods, it is essential that both models have to be 
built with the same mesh size, time increment, dimensions and boundary conditions. 

4.1. Description of the test 

For the application of the SGP algorithm extended to the 2D simulation of the impregnation, 
considering a numerical example, a cylindrical porous sample is in (partial) contact with a liquid at the 
bottom surface. The height and width of the sample are 0.04 m and 0.035 m (in Figure 3) respectively. 
The porous material is Alumina 99% and the impregnated liquid is glycerine.  

resdidual = Π −𝑚𝑚𝑡𝑡 

 

Lo
op

 o
n 

tim
es

te
p 
𝑡𝑡 

residual ≠ 0 

residual = 0 

DATA 

𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡,𝑡𝑡0
𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 ,𝜎𝜎0,𝛾𝛾,𝐷𝐷,𝑚𝑚, , 𝜂𝜂,Π 

 
𝜎𝜎𝑖𝑖𝑛𝑛 = 𝜎𝜎𝑖𝑖𝑛𝑛−1 + 𝛼𝛼�𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 (𝑑𝑑)� 

𝑋𝑋�𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐(𝑧𝑧1),𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐(𝑧𝑧2), 𝑡𝑡0� 

(detailed in Eq. (5)) 

CONVOLUTION OPERATOR 

𝑆𝑆(𝑡𝑡,𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡(𝑧𝑧)) = 𝑋𝑋(𝑡𝑡,𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡(𝑧𝑧)) ∗ 𝛿𝛿(𝑧𝑧) 

END 

START 
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Figure 3 – The specific dimensions and boundary conditions of the numerical test are used both for the models 
using FEM and SGP method. The mesh size is 0.03 m (along surface 𝜕𝜕𝜕𝜕), 0.025 m and 0.0267 m (along surfaces 

𝜕𝜕𝐴𝐴 in the horizontal and vertical directions, respectively). 

Due to the lack of experiment data, the validation of the performance of the 2D SGP algorithm is made 
by comparisons of the local saturation of each square of the model using FEM with the one of each 
square with the same coordinates of the SGP model. Obviously, the number of the squares of each model 
is equal to the number of the squares in row multiplied with the one in the column. It leads to compare 
a very large number of squares in the case of very smooth mesh. To be simple in our ongoing study, we 
decided to consider the model with a coarse grid, but, of course, must respect the condition between 
time step and mesh size to avoid the spurious problems [5].  

For the boundary conditions in both models, there is an imposed pressure on boundary surface 𝜕𝜕𝜕𝜕 
and the free draining on boundary surfaces 𝜕𝜕𝐴𝐴 used in the simulation (Figure 3). In particular, for the 
first one, the liquid is in contact with surface 𝜕𝜕𝜕𝜕, so it corresponds to an imposed total pressure; for the 
second one, to make sure that the liquid can be free to flow out of these surfaces, the drainage-only 
boundary condition is imposed on surface 𝜕𝜕𝐴𝐴. The “expression” of these boundary conditions in the 
SGP model is done thanks to the convolution procedure [3]. 

4.2. Results and comparison 

Table 1- CPU time and time ratios between FEM and SGP method. 

 

 

 

Durations 
(in seconds) 

CPU time (in seconds) Time 
ratios  FEM SGP method 

142 15 0.075 200 

4254 48.3 0.5367 90 

𝜕𝜕𝐴𝐴 

𝜕𝜕𝐴𝐴 𝜕𝜕𝐴𝐴 

𝜕𝜕𝐴𝐴 𝜕𝜕𝐴𝐴 𝜕𝜕𝜕𝜕 
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Figure 4 –Simulations using FEM and SGP method for the evolution of the saturation fronts at different time 
from (a) to (d). The absolute errors (e) and (f), calculated by the absolute minus of the local saturation at a square 

(a) (b) 

(c) (d) 

(e) (f) 

Absolute error at 4254s  



8 

of the model using FEM with the local saturation of the square with the same coordinates of the SGP model at 
different time, is resulted in the scale color bar. 

The computational costs for the test for the SGP method and FEM are obtained by running the software 
on 2.60 GHz, x64-based PC with 32 GB of RAM. Obviously, the computational time of the SGP 
algorithm is significantly lower than the one of FEM (Table 1). This variation in the ratio is due to the 
difference in the evolution of time step between both methods [3]. 

5. Conclusion 

In this work, our ongoing study of the extending 2D SGP method to the impregnation process is 
proposed. The preliminary visualizations from the FEM and SGP method (Figure 4 (a) to (d)) seems to 
indicate that the behaviour of the evolution of the saturation fronts from the two methods are the same 
at the first time steps (Figure 4 (e) and (f)).  

Hence, there is still a huge work to do in order to study the mesh sensitivity, the impact of the time 
step, the impact of each of the parameters required for the SGP model and their link with the physics 
(properties of the material). For the perspectives, the SGP algorithm is expected to adapt itself to taking 
into account the kinetics of the liquid motion in respect with the gravity direction. Then, to validate the 
results in this case, it is necessary to fit the kinetics of the liquid motion along the porous sample by 
comparing with the mass gain curves from FEM and/or experimental data at each separate zone 
regarding the gravity direction of the porous sample. 
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