
CSMA 2019
14ème Colloque National en Calcul des Structures

13-17 Mai 2019, Presqu’île de Giens (Var)

Material parameter identification using set-valued inverse problem
and detection of outliers in the noisy measurements

K. Shinde1, P. Feissel1, S. Destercke2

1 Roberval, Université de Technologie de Compiègne, {krushna.shinde,pfeissel}@utc.fr
2 Heudiasyc, Université de Technologie de Compiègne, sebastien.destercke@hds.utc.fr

Résumé — The present work describes a new parameter identification strategy using a set-valued inverse
method. We applied this strategy to identify the elastic parameters of an isotropic material, and it allows
to take into account both prior information about the parameters as well as measurement uncertainty in
the form of sets (interval or boxes) during the inversion process. The main advantage of this strategy is
not only it helps to obtain a feasible set of the parameters but is also able to detect the outliers in the
noisy measurements.
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1 Introduction

Material characterization is necessary to design optimal structures. Characterization of material be-
havior requires (under heterogeneous conditions, e.g. complex loading, geometry or material) a method
to identify the material parameter. The deterministic identification problem is generally ill-posed, and
one way to resolve this issue is to add uncertainties. These uncertainties pervade multiple aspects of the
problem : in the model, in the measurements, in expert knowledge. Modeling all these uncertainties by
probabilities is questionable, especially when information is partial or missing [7].

Many methods are proposed in the literature such as deterministic least squares and non-deterministic
Bayesian inverse method for identification [2] [4]. The first does not give error bounds on the identified
parameter, and it is sensitive to the presence of outliers in the data used to fit a model [8]. The latter
adopts subjective probabilistic modeling [1]. In the literature, a lot of researchers argued that probabi-
listic methods such as Bayesian inverse methods are not well suited for representing and propagating
uncertainty when information is missing [3] [9] [5]. This method is sensitive to outliers in the data and to
mis-specification of priors [10], and requires a prior assumption on the uncertainties, e.g. measurement
error usually considered as Gaussian. Hence, it is crucial to have an identification framework which
should consider all kind of information, and should be robust to outliers.

This work addresses these issues, by proposing a set-valued inverse method which is not only able to
identify a feasible set of the parameters but is also able to detect outliers in the measurements. The work
is structured as follows. Firstly, the identification strategy for set-valued inverse problem is described
which includes the theoretical approach and its implementation. Secondly, this strategy is applied to
identify the elastic parameters of an isotropic material from full-field displacement measurements and
detect outliers in the measurements.

2 Identification strategy

Our strategy aims at identifying the set of the model parameters by making use of available informa-
tion such as measurement data as well as prior information about the parameters using sets to model the
information.

2.1 Set-valued inverse problem

Let us consider an inverse problem where we want to identify some parameters of a model from
measurements. A direct problem yields the relationship between the model parameters and the measure-
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ments as shown in Equation (1).

y = f (x) (1)

where x denotes the parameters of the model such that x ∈ RNx , Nx is the number of parameters, and
y denotes the measurements such that y ∈ RNy , Ny is the number of measurements. A typical example
introduced in Section 3 is the one where x corresponds to elastic Lamé parameters and y is full-field
displacement data. The measured quantity corresponding to y is denoted as ỹ. The discrepancy between
y(x) and ỹ is mainly due to model and measurement errors. In the proposed approach, sets describe the
uncertainty in both the measurements and the identified parameters. Hence, the solution of the inverse
problem can be obtained thanks to a set inversion process. The uncertainty in the measurements is des-
cribed through the set Sy ⊂ RNy as shown in Equation (2) with each measurement having a lower bound
ỹk and an upper bound ỹk.

Sy =
Ny

∏
k=1

[ỹk, ỹk] (2)

Given a set Sy ⊂RNy describing the uncertainty on ỹ , the set Sx ⊂RNx describing the solution of the
inverse problem is defined as shown in Equation (3) where Sox ⊂ RNx is a prior parameter set.

Sx = {x ∈ Sox | f (x) ∈ Sy} (3)

In the current work, it is possible to obtain a solution set for each individual measurement, denoted
as Sk

x shown in Equation (4) and Sx can be obtained as the intersection of the Sk
x by using Equation (5).

Sk
x = {x ∈ Sox | yk(x) ∈ [ỹk, ỹk]} (4)

Sx =

Ny⋂
k=1

Sk
x (5)

In case of inconsistent measurements, the set-valued inverse method gives an empty solution set Sx =

/0 corresponding to
⋂Ny

k=1S
k
x = /0. There may be several reasons for the inconsistency of the measurements

with respect to the model : presence of measurement outliers, model error.

2.2 Outlier detection

In case of inconsistency, a way to restore consistency is to remove incompatible measurements, i.e.
outliers. To do this, we must evaluate the degree of consistency of each measurement. We will now
propose such a measure.

For any two solution sets Sk
x and Sk′

x corresponding to ỹk and ỹk′ measurement respectively, (k,k′) ∈
{1, ...,Ny}2, we define the following indicators of the degree of inclusion with one another as shown in
Equation (6) where A(Sk

x) corresponds to the area of the set Sk
x.

Ck′k =
A(Sk

x∩Sk′
x )

A(Sk
x)

and Ckk′ =
A(Sk

x∩Sk′
x )

A(Sk′
x )

(6)

These indicators follow the properties shown in Equation (7).

Ck′k =

{
1 iff Sk

x ⊆ Sk′
x

0 iff Sk
x∩Sk′

x = /0
and Ckk′ =

{
1 iff Sk′

x ⊆ Sk
x

0 iff Sk′
x ∩Sk

x = /0
(7)

Furthermore, the value of Ck′k or Ckk′ will always be between 0 and 1 when A(Sk
x) or A(Sk′

x ) is non-
zero. The larger these indicators are, the larger is the overlapping of Sk

x and Sk′
x , hence the higher the

degree of inclusion between the corresponding measurements.
By using the pairwise degree of inclusion of the measurements, we define the global degree of consis-

tency (GDOC) of any kth measurement as shown in Equation (8).
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GDOC(k) =
∑

Ny
k′=1

A(Sk
x∩Sk′

x )
A(Sk

x)
+∑

Ny
k′=1

A(Sk
x∩Sk′

x )

A(Sk′
x )

2Ny
(8)

The GDOC follows some properties as shown in Equation (9).

GDOC(k) =
{

1 iff S1
x = S2

x , ...,= Sk
x

0 iff Sk
x∩Sk′

x = /0, ∀ k′ ∈ {1, ...,Ny}
(9)

The value of GDOC(k) will always be between 0 and 1, and also one thing to notice that the condition
that allows GDOC =1 is very strong to satisfy. If GDOC(k) = 0 then the kth measurement is fully
inconsistent with all other measurements. A high value of GDOC for the kth measurement indicates that it
has a high consistency with other measurements. Hence, GDOC can detect less consistent measurements
from the set of measurements that can be considered as outliers. The idea is to remove measurements
that have 0 or very low value of GDOC from the set of measurements to obtain non-empty solution set.

2.3 Implementation

In order to compute the set inversion, we have to choose a discrete description of the sets. This could
be done through a subpaving of boxes strategy, as it is used in the SIVIA algorithm [6]. Here, we choose
to use the same description of the sets as the one used in [5] through a grid of points, xi, i ∈ {1, ...,Ng}
where Ng is the number of grid points. Such a description is convenient when comparing or intersecting
the sets since the grid of points is the same for any set. Any set Sx ⊂ Sox is then characterized through its
discrete characteristic function, defined at any point xi ∈ Sox of the grid as shown in Equation (10).

χSx(xi) =

{
1 if xi ∈ Sx

0 otherwise
(10)

In the current application, a uniform grid is chosen to describe prior parameter set Sox, but it is not
mandatory. In our method, each Sk

x is therefore described by its discrete characteristic function, defined
at any point of the grid as shown in Equation (11) where yk(xi) represents the model data at any grid
point.

χSk
x
(xi) =

{
1 if ỹk ≤ yk(xi)≤ ỹk

0 otherwise
(11)

These discrete characteristic function can be collected in a Ng×Ny matrix X as columns of boolean
values. By taking advantage of the matrix X , a Ny ×Ny matrix T = XT X can be obtained which is
symmetric. The diagonal element Tkk of T represents the number of grid points from a prior parameter
set Sox for which the kth measurement is consistent and it is proportional to A(Sk

x). The non-diagonal
element Tkk′ of T represents the number of grid points from a prior parameter set Sox for which both
kth and k′th measurements are consistent and it is proportional to A(Sk

x ∩ Sk′
x ). Hence, GDOC can be

computed from matrix T for any kth measurement as shown in Equation (12).

GDOC(k) =
∑

Ny
k′=1

Tk′k
Tkk

+∑
Ny
k′=1

Tkk′
Tk′k′

2Ny
(12)

3 Applications

In this Section, we applied the set-valued inverse method to identify elastic properties (Lamé para-
meters : λ and µ) of a homogeneous 2D plate as shown in Figure 1(a). The plate is clamped on the left
side and loaded on the right side by a uniform traction f = 1000 N. To generate displacement measu-
rement data ỹ (386 measurements), exact displacement data yRe f is simulated by FE model (193 nodes,
336 elements) as shown in Figure 1(b) with taking reference value : λ0 = 1.15× 105 MPa and µ0 =
7.69×104 MPa. Then, the measurement ỹ is created from yRe f , by adding a Gaussian white noise with
standard deviation σ. In the current work, σ was taken as 5% of the average of all the exact displacement
values and it can be assumed that σ can be deduced from the measurement technique.
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(a) 2D homogeneous plate (b) FEM mesh

FIGURE 1 – A homogeneous plate and its model

For the set-valued inverse method, the uncertainty on the measurements is described in interval form.
Therefore, each measurement is considered in interval form with lower and upper bounds ([ ỹk− 2σ,
ỹk + 2σ ]). The bounds on the measurement should be greater than the standard deviation σ to capture
the solution set of the parameter. Hence in the current work, it was chosen as 2σ. Prior information about
the parameters (Sox) is considered as a uniform grid λ× µ with λ = [0.72× 105, 1.90× 105] and µ = [
7.2× 104, 8.15× 104]. The method is studied with different natures of the uncertainty in the data such
as when there is no noise in the data, when there is random noise in the data, when data is corrupted
because of the local inclusion in the material corresponding to a non-homogeneous material.

3.1 Identification from exact data

In this section, we applied the set-valued inverse method to identify the set of elastic parameters
when there is no noise in the data. The measurement data was chosen to be exact such that ỹ =yRe f and
the information on the measurement ỹ was described in an interval form : [ ỹ−2σ, ỹ+2σ ].

FIGURE 2 – Feasible set of parameters

Figure 2 shows the feasible set (yellow color) of the identified parameter which is consistent with all
386 measurements using the set-valued inverse method. The size of the feasible solution set depends on
the magnitude of the upper and lower bounds of the measurement interval.
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3.2 Identification from data with random noise

In this section, we applied the set-valued inverse method to identify the set of elastic parameters
when there is random noise in the data. The measurement ỹ is created form yRe f , by adding a Gaussian
white noise with standard deviation σ and the information on the measurement ỹ was described in an
interval form : [ ỹ−2σ, ỹ+2σ ].

(a) Empty solution set (b) Solution set after detecting outlier

FIGURE 3 – Outlier detection

FIGURE 4 – GDOC

Figure 3(a) shows that the identified set (green color) is empty due to inconsistency within the mea-
surements. Hence, to obtain a non-empty solution set, we need to detect the outliers. A way to detect
outliers is to know GDOC of each measurement. Figure 4 shows GDOC of all the measurements in de-
creasing order, and it can be observed that the value of GDOC starts to decrease abruptly on this example
where GDOC is between 0.65 and 0.52. A possible criterion for outlier detection could be to detect this
abrupt decrease of the estimator of consistency of the data. This detection should be performed automati-
cally, yet in this first example, it was done manually by choosing a threshold of 0.64. The corresponding
identified set (yellow color) is presented in Figure 3(b), where 75 measurements were removed.

3.3 Identification from data corrupted by a local inclusion in the material

In this section, we applied the set-valued inverse method to identify the set of elastic parameters
when data is corrupted because of a less stiff local inclusion in the material which results in a non-
homogeneous material. The measurement ỹ (corrupted data) is created by FE model as shown in Figure
5 with taking reference value of λ1 = λ0 = 1.15×105 MPa, µ1 = µ0 = 7.69×104 MPa for the region of
the mesh outside the red boundary and λ2 = 2.77×104 MPa, µ2 = 4.16×104 MPa for the region of the
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mesh inside the red boundary. The information on the measurement ỹ was described in an interval form :
[ ỹ−2σ, ỹ+2σ ].

FIGURE 5 – FEM mesh

(a) Solution set before detcting outliers (b) Solution set after detecting outliers

FIGURE 6 – Outlier detection

Figure 6 (a) shows the solution set of the identified parameters which is consistent with all 386
measurements and it can be observed that the identified set does not include the reference value of Lamé
parameters (λ0, µ0) shown by red mark. Hence, in this case, we want to reject the measurements which
are corrupted. The same procedure as the one proposed in section 3.2 is then applied to detect outliers
based on a manual detection of the brutal drop-off of the GDOC curve presented in Figure 7. In this
particular case, the threshold is chosen as 0.68 and the identified set is presented in Figure 6(b) with
20 measurements removed. The removed measurements are close to a less stiff inclusion, and such a
removal allows to identify a set which includes the reference value of Lamé parameters (λ0, µ0) of the
bulk material shown by a red mark.
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FIGURE 7 – GDOC

4 Conclusions

In this work, we presented a new parameter identification strategy relying on the set theory. This stra-
tegy is robust to outliers. We applied this strategy to identify the elastic properties of an isotropic material
with three different cases of measurement data as described in section 3.1, 3.2 and 3.3 respectively. The
results showed that the identification strategy is not only helpful to obtain a feasible set of the parameters
but is also able to detect the outliers in the noisy measurements.

The detection of outliers in the measurements is based on a global degree of consistency (GDOC)
of each measurement. The main challenge is then to decide the threshold value of GDOC to remove
outliers. In the current work, the threshold was detected manually based on the drop-off of the GDOC
curve. The current work focuses on the automatic detection of the drop-off and the other outlier detection
criterions. These are under investigation and shall be compared for the presentation.

Then the next step in this work is to compare this strategy with the least squares method or Bayesian
inference. Then, we intend to apply this strategy to structural health monitoring problems, identification
of non-linear material model.
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