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Abstract — Fast, reliable and easy measurement of preform permeability is a crucial need for composite 

manufacturing by liquid molding. This paper proposes a data-driven method to identify permeability by 

tracking flow front information. We combine the data-driven computational mechanics scheme [6] along 

with the data-driven identification [8] and add necessary self-consistent corrections on the algorithms’ 

parameters for the characterization of isotropic, orthotropic and general anisotropic permeability. 
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1. Introduction 

Composites have become an essential part of today’s materials in various industries, mainly due to 

their high mechanical properties such as strength to weight and stiffness to weight ratios, high corrosion 

resistance and fatigue life. With their prominent advantages over metals [9], composites have 

nevertheless some drawbacks and limitations in their use, i.e., fairly large processing and performance 

variabilities are induced by the uncontrolled microscopic changes in the composite part. With the 

permeability being one of the most sought parameters to be identified for composite processing, multiple 

approaches have been developed and are currently applied in the composites industry to determine the 

permeability of fibrous media. Yet, all methods and flow models used to simulate liquid injection 

molding and to determine the permeability values are based on the Darcy’s linear equation [2] (Eq. 1).  

<vf> = -
𝐾

η
.∇ <Pf>

f 
(1) 

Where <vf> is the superficial Darcy’s velocity, 𝐾 the permeability tensor, η the fluid viscosity and 

<Pf>
f the fluid pressure. 

The Darcy equation is based on many assumptions about the nature of interactions between the 

moving fluid and the fibrous medium viewed as a porous medium. However, there are many situations 

encountered in composite processes where these assumptions are not met. So this model is no longer 

valid and a new non-linear relationship between fluid velocity and pressure gradient must be determined 

for many cases. 

Recently, Kirchdoerfer and Ortiz have introduced the concept of Data-Driven Computational 

Mechanics (DDCM in the following) [6], where constitutive equations are replaced by a database of 

measured stress-strain couples that samples the mechanical response of the material. Alternately, 

Leygue et al. [8] proposed a method that allowed the data-driven identification (DDI) of the material 

database: without introducing any modeling bias, DDI relaxes the necessity of an explicit or implicit 
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strain-stress relation and identifies the material behavior by sampling the mechanical response.  

The aim of the paper is to propose a data-driven methodology that allows the reliable identification 

of permeability using the least amount of experimental information; for this purpose, we choose to 

extend the scheme proposed by Leygue et al. [8]. The outline of the paper is as follows: first we briefly 

present classical methods that allow the permeability prediction. Then we recall the method from 

Kirchdoerfer and Ortiz [6] for data-driven simulation (DDS) and the one from Leygue et al. [8] for DDI, 

before extending it to the case of permeability identification from flow patterns. 

2. Permeability  

2.1. Definition 

Primarily introduced by Darcy in 1856 [2] as an empirical geometrical property of the fibrous 

medium, permeability has become one of the most sought parameters to be identified, due to the huge 

expansion of the composites usage in high performance (aircraft, shipyard etc.) and high series (cars, 

sports and leisure etc.) industry. Permeability represents the ability of a medium to allow a fluid to pass 

through; a parameter that solely depends on the pore geometry of the porous medium. In the case of 

anisotropic medium, permeability is direction dependent, (fiber reinforced composites are a notable 

example of a porous medium with direction dependent properties) and can be written in the form of a 

symmetric second order positive definite tensor [1]. 

K= [

Kxx Kxy Kxz

Kxy Kyy Kyz

Kxz Kyz Kzz

] (𝑚2) 
(2) 

2.2. Classical measurement methods  

Permeability measurement methods are 

classified based on the flow pattern: 

Unidirectional or 2D-Radial flow; the imposed 

boundary conditions: constant inlet pressure of 

fluid impregnating the bed, or constant flow 

rate; experiments can also be classified on 

whether the flow is in a saturated porous 

medium –or in a dry preform where the flow 

front is tracked. Multiple setups using radial 

flow method [4, 7, 10] or unidirectional flow 

method [5, 10, 11] were designed over the past 

thirty years. In parallel to these experimental 

setups, numerical techniques were developed to 

determine the permeability from experimental 

data (pressure, flow rate, flow front extent). 

(Fig. 1) 

 

Figure 1 - Experiment equipment for radial flow - 

schematic diagram [10] 

The above-mentioned methods and flow models are all based on Darcy’s equation, which is a linear 

model. This bias was a major motivation for the introduction of a novel model-free approach based on 

the promising results of the DDCM paradigm in identifying material properties.  



 

3 

3. Data-Driven Computational Mechanics  

DDCM introduces a new paradigm in computational mechanics in which fundamental balance 

principles and compatibility relations are enforced and where the numerical schemes used in their 

discretization such as finite elements, time-integrators, etc. remain unchanged. On the other hand, the 

stress-strain constitutive law classically formulated as 𝜎 = 𝑓(𝜀) is replaced by a database of 𝑁∗ 

admissible material states (𝜀𝑖
∗ , 𝜎𝑖

∗), where 𝑖 = 1 … 𝑁∗. Indeed, the constitutive relation and its 

parameters have an intrinsic phenomenological nature.  

Considering a given material dataset measured from previous experiments, the data-driven solver 

seeks to assign to each element, “a prespecified data couple that is closest to satisfying the conservation 

laws. Equivalently, DD solvers aim to find the state satisfying the conservation laws that is closest to 

the data set.” [6].  

 
A priori, the problem is formulated as a minimization of a global weighted distance introduced in 

terms of two energies, 𝑾𝒆 and 𝑾𝒔 (3) as function of a parameter [𝐶], present in both energy forms, of 

numerical nature.  

𝑾𝒆(𝜀) =
1

2
 𝐶 𝜀2              𝑾𝒔(𝜎) =

1

2 𝐶
 𝜎2 

(3) 

Therefore, the objective function to minimize is: 

𝑎𝑟𝑔  𝑚𝑖𝑛
𝜀𝑒 , 𝜀𝑒

∗  ,𝜎𝑒,𝜎𝑒
∗ 

∑ 𝑤𝑒(𝑾𝒆(𝜀𝑒 − 𝜀𝑒
∗ ) + 𝑾𝒔(𝜎𝑒 − 𝜎𝑒

∗))

𝑒

  (4) 

Which is subject to the following constraints: 

𝑓𝑖 = ∑ 𝑤𝑒𝐵𝑒𝑖𝜎𝑒    

𝜀𝑒 = ∑ 𝐵𝑒𝑖 𝑢𝑖 

𝜀𝑒
∗  , 𝜎𝑒

∗   ∈  (𝜀∗ , 𝜎∗)𝑁∗   

(5) 

Where 𝑖 and 𝑒 denote respectively the degrees of freedom and the indices over the quadrature points, 

𝑤𝑒 encodes the quadrature weight and 𝐵𝑒𝑖 the connectivity and geometry of the computational mesh. 

The DDCM framework developed for small strain elasticity can be adapted to the flow in porous 

medium case in a straightforward manner through the following substitutions (Table 1). 

Table 1 - Analogies between elastostatics and creeping flow in porous media 

Discipline Primary variable Driving force Flux 
Conservation 

equation 

Small strain 

elasticity 
Displacement 𝑈 

Displacement 

gradient 𝜀 
Momentum flux 𝜎 ∇ ∙ σ = 𝑓 

Flow in porous 

medium 
Pressure 𝑃 

Pressure gradient 

∇𝑃 
Mass flux 𝑣 ∇ ∙ v = 0 



 

4 

4. Data-Driven Identification  

In recent publications, Leygue et al. [8] proposed a method to find the material behavior in form of 

database of compatible states based on the concept of DDCM [6]. The method requires the displacement 

fields (pressure fields in our case) and the boundary conditions from multiple snapshots for solving the 

inverse problem: a minimization of the following objective function. 

𝑎𝑟𝑔  𝑚𝑖𝑛
  𝜀𝑒

∗  ,𝜎𝑒,𝜎𝑒
∗ 

∑ 𝑤𝑒(𝑾𝒆(𝜀𝑒 − 𝜀𝑒
∗ ) + 𝑾𝒔(𝜎𝑒 − 𝜎𝑒

∗))

𝑒

  (6) 

Thus, the algorithm identifies the material database of 𝑁∗ compatible states (𝜀𝑖
∗ , 𝜎𝑖

∗) and the stress field 

𝜎𝑒 in the computational mesh simultaneously.  

4.1. Data-Driven Permeability Identification Procedure 

The porous geometry of trapezoidal shape with impermeable circular zones in the domain is created 

(Fig. 3). The preform has a fiber volume fraction of 50% and 𝐾 = [
0.1 0.0
0.0 0.5

] 𝑚2 permeability. 

Impermeable zones force the fluid to flow around these obstacles, creating more geometrically complex 

flows. These latter reveal more local characteristics of the porous medium than a simple frontal flow 

[3].  

Resin of 0.2 Pa. s viscosity is injected inside the medium via an inlet point at pressure P𝑖𝑛. The vent, at 

𝑃𝑜𝑢𝑡, is situated at the opposite corner. Information on the flow front position and velocity at different 

time steps can be acquired – either numerically or via Digital Image Correlation technique in 

experiments. 

4.2. Data-Driven Permeability Identification: Idealized Case  

First, we set ourselves in an idealized case for DDI. Knowing the boundary conditions, we then 

acquire the full pressure field on each snapshot from computer simulations of the liquid injection 

process. This scheme allowed the data-driven identification of isotropic, orthotropic and general 

anisotropic permeability. 

For the orthotropic permeability case, 8 different injection scenarios including different boundary 

conditions and inlet gate positions are designed.  𝑁∗ = 1000 points were chosen to be identified for 

sampling the material response of the flow inside porous medium. The mismatch parameter [𝐶] is set to 

identity tensor. The database convergence (Fig. 2) is achieved within the first 21 iterations with a global 

error of 1.7%. The distribution of relative errors is shown in the histogram in Figure 2. 

      

Figure 2 - Material Database Identified for Anisotropic Permeability (Left)  

Histogram of Distribution of Relative Error (Right) 
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4.3. Data-Driven Permeability Identification: Realistic Case  

From the experimental point of view, measuring the full pressure field in the mold represents a big 

challenge. Accordingly, we propose a data-driven method that replaces the unavailable pressure data 

required for DDI, by simulating the pressure field via DDCM with the current material database. The 

high dependency of this method on the mismatch parameter [𝐶] required the correction of the latter after 

each simulation until stagnation. 

This identification process combining the DDCM and the DDI schemes was only possible if 

redundant information on the flow front were known: the flow front position and the velocity at different 

time steps of the injection.  

The overall algorithm of the data-driven identification from flow patterns becomes as follows: 

i. Input Guessed Material Database 

ii. Run Data-Driven Simulation  

iii. Compute Updated Material Database 

iv. Correct [C] 

v. Repeat steps ii - iv until convergence 

vi.  

             

Figure 3 - Material Database Identified for Anisotropic Permeability from flow front information  

 
Data from 20 snapshots of a single point injection experiment were gathered, N* = 1500 material 

states were chosen to be identified for sampling the material response for the flow inside the porous 

medium. The mismatch parameter [C], first set to identity tensor, is then updated by self-consistent 

corrections after each iteration. Starting with a database of zeros, the convergence was achieved within 

the first 4 iterations, and the global error dropped from 17% to 1% only after the first correction (Fig. 

3).

5. Conclusion  

The data-driven permeability characterization method based on the methodology originally developed 

for mechanics of materials brings multiple advantages with respect to current permeability identification 

techniques:  

• No specific mathematical flow model has been used to back calculate the material property that 

links the flow velocity field to the pressure field. This method generalizes the classical permeability 
identification procedure to more complex cases where the velocity/pressure relationship is actually non-

linear, making thus the solution uncertainty-free and inherited from accurately measured experimental 

data.  
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• Fluid viscosity and boundary conditions introduce no variabilities in the permeability 

determination.  

• A minimum amount of data is required for the determination of isotropic and anisotropic 

permeability, by tracking flow front patterns in the domain at different time steps.  

 

In addition, this data-driven identification method from flow patterns suggests an improvement over 

DDI as proposed by Leygue et al. by extending its capabilities [8]. Indeed, the full field data is not 

required for identifying material properties, instead, the missing information are self-constructed 

within the iterations. 

6. Perspectives  

For a formed fibrous reinforcement, local variations in fiber content and orientation exist, leading 

thus to spatial permeability variations. The proposed data-driven identification method will be extended 

to address 3D preforms to identify the local changes in permeability induced by the forming of fabrics.  

As a continuation of this project, additional research will develop a low-cost, model-free, 

uncertainty-free identification method that can be implemented in various engineering problems.             
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