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Abstract — We address the problem of reconstructing a three dimensional velocity field in a human
blood vessel using Doppler ultrasound images. For this, we propose to combine the Doppler measure-
ments with realistic Navier-Stokes models and apply the general state estimation technique introduced
in [1]. The method requires finding a reduced basis of the model and a good modeling of the sensor
response. In this note, we report preliminary results where we explore the reconstruction quality when
we use Principal Component Analysis for the model reduction and model Doppler measurements as
bi-dimensional mappings of the velocity over the plane in which the ultrasound probe is pointed to.
Keywords — Flow reconstruction, Inverse problems, Doppler ultrasound, State Estimation, Model Re-
duction.

1 Optimal reconstruction algorithm

We consider the following state estimation problem: from a set of Doppler ultrasound images, build
a reconstruction of the three-dimensional velocity field u in a human blood vessel represented by a
domain Ω ⊂ R3. The velocity u will be seen as a function u living in a Hilbert space H with inner
product 〈·, ·〉 and norm ‖·‖. The reconstruction strategy that we propose is based on the assumption
that we know a Partial Differential Equation that models accurately the underlying hemodynamics of the
process. However, since we only have access to the Doppler measurements, the appropriate parameters
of the PDE are unknown and the problem does not resort to simply solving the PDE. One possibility
to do the reconstruction would be to solve a classical inverse problem and find the set of parameters to
reconstruct with the associated PDE solution. However, this approach has a high computational cost and
cannot be used for online reconstruction. In addition, the reconstruction will always have an intrinsic
modelling error that cannot be overcome. An alternative approach yielding an online reconstruction
methodology that can overcome to some extend the model error is the following.

We consider the manifold M ⊂H of solutions of the parametrized PDE model, that is,

M = { f ∈H ; B( f ;α) = 0}

where B is the PDE model and α∈Rp is the vector of parameters ranging in a set P ⊂R p. Furthermore,
we consider a low-dimensional linear space Vn that approximates M up to a certain accuracy εn:

max
f∈M

dist( f ,Vn)≤ εn

We assume that u belongs to the cylinder

K := { f ∈H : dist( f ,Vn)≤ εn}.

Note that this assumption implies that the reduced model approximates u with accuracy εn but we do not
assume that u belongs to the manifold of solutions M . This detail will become important further on to
understand why the method overcomes the model error to some extend.

Regarding the Doppler velocity measurements, we model them as m values {li(u)}m
i=1, where each li

is a linear functional living in the dual of H that mimics the action of the action of the sensing device. We
defer further explanation on this modeling to the next section and introduce here the space of observations
Wm:

Wm = span{ω1,ω2, ...,ωm},
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where the {ωi}m
i=1 are the Riesz representers of the measures. Assuming that the m linear functionals are

linearly independent, the {ωi}m
i=1 are also linearly independent and Wm is of dimension m. As a result,

having the vector of measures l = {li(u)}m
i=1 ∈ Rm is equivalent to having the orthogonal projection of u

into Wm. Therefore, if we summarize the information coming from the measurements and the model, the
problem is to

Find an approximation u∗ to u given ω = PWmu and that u ∈K .

In practice, we will have u ∈ RN . Let us consider an orthogonal basis {φ}n
i for Vn and let us arrange it

in the columns of a matrix Φ ∈ RN ×n. Also, let us arrange the Riesz representers into the columns of a
matrix W ∈ RN ×m, which is going to be called the measure operator.

The reconstructed field u∗ will be the one such that its projection on the orthogonal complement of Vn,
i.e., PV⊥n u = (I−ΦΦT )u, is minimized:

u∗ = arg inf
u∈Vn

1
2
‖PV⊥n u‖2

s.t. W T u = l

This methodology was originally proposed in [1] and a detailed analysis was given in [2]. In particu-
lar, it has been proven that the reconstruction with u∗ is the best possible reconstruction for the problem
(P). It has also been shown that the error in approximating u has the following bound:

‖u−u∗‖ ≤ 1
β(Vn,Wm)

dist(u,Vn⊕V⊥n ∩Wm)

where,

β(Vn,Wm) = min
v∈Vn

‖PWmv‖
‖v‖

.

The reconstruction is well posed provided that β(Vn,Wm) > 0, which is an assumption that we make in
the following (one can actually realize that this requirement is very mild in realistic cases of application,
see, e.g., [3]).

Note that if m > n, the error ‖u−u∗‖< β(Vn,Wm)
−1εn and the inequality is strict due to the fact that

V⊥n ∩Wm 6= {0}. This shows that the approach corrects to some extend the model error.

2 Doppler measures

In this section, we detail how we model action of the Doppler sensing devices with linear functionals li.
The Doppler ultrasound images are obtained by using a transducer as the one in figure 1, that estimate
the velocity of groups of red blood cells in the vessel by comparing a sequence of ultrasound waves in
time (see for example the algorithm shown in [4]).

(a) Transducer for ultrasound image ac-
quisition.

(b) Typical color flow mapping

Figure 1: Ultrasound device and color flow image.
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In classical velocity estimation, what is obtained is a two dimensional mapping of an averaged velocity
component in the direction of the ultrasound beam over sample volumes, a set of cubic sub-domains
(a.k.a. voxels) of the geometry: {Ωi}m

i=1, with Ωi ⊂Ω. This is,

li(u) =
∫

Ωi

(u) ·n dΩi

Hence, for each image (or measure), we will say that we have a set of m sub-measures. Nevertheless,
when no misunderstanding can arise, the word sub-measure will be replaced for the word measure.

From the fact that all the sample volumes are disjoint sets, it follows that the Riesz representers of the
measures are orthogonal to each other. Therefore

ω = PWmu =
m

∑
i=1
〈ωi,u〉ωi =

m

∑
i=1

liω.

By inspection of 2 we can see that the Riesz representers are ωi = χini, where χi is a function valued 1
inside Ωi and 0 outside, and ni a vector pointing towards the direction of the ultrasound beam.

3 Numerical Example

We have tested the algorithm in a carotid bifurcation geometry (see figure 2), where the numerical reso-
lution of the in-compressible and Newtonian Navier-Stokes equations is performed varying 5 parameters
of the flow in order to build the dictionary. In total, the dictionary contains 300 simulations. The numer-
ical solution of the governing laws is done with finite elements (we omit further details on the solver for
lack of space).

Let p be the pressure field and u the velocity field. The Navier-Stokes equations for a domain Ω readsρ
∂u
∂t

+ρu∇u−µ∆u+∇p = 0 in Ω

∇ ·u = 0 in Ω,

where ρ is the density of the flow and µ its viscocity.

Figure 2: Geometry for the simulations. Note the presence of a small stenosis upstream the bifurcation.

An example of output of the algorithm is given in figure 3. Some statistics for the L2(Ω) error are
given in the figure 4. We see that we achieve an accuracy of around 10−3 with an appropriate choice of
n. Further details and results will be given in the forthcoming article [5].
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(a) Synthetic measures (b) Reconstructed field

Figure 3: Example for the reconstruction in the common carotid.
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Figure 4: Error vs the dimension of Vn.
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